
Designing occupancy studieswhen false-positive

detections occur

MatthewJ. Clement*,†

United States Geological Survey, Patuxent Wildlife Research Center, 12100 Beech Forest Road, Laurel, MD 20708, USA

Summary

1. Recently, estimators have been developed to estimate occupancy probabilities when false-positive detections

occur during presence–absence surveys. Some of these estimators combine different types of survey data to

improve estimates of occupancy. With these estimators, there is a trade-off between the number of sample units

surveyed, and the number and type of surveys at each sample unit. Guidance on efficient design of studies when

false positives occur is unavailable.

2. For a range of scenarios, I identified survey designs that minimized the mean square error of the estimate of

occupancy. I considered an approach that uses one survey method and two observation states and an approach

that uses two survey methods. For each approach, I used numerical methods to identify optimal survey designs

whenmodel assumptions weremet and parameter values were correctly anticipated, when parameter values were

not correctly anticipated andwhen the assumption of no unmodelled detection heterogeneity was violated.

3. Under the approach with two observation states, false-positive detections increased the number of recom-

mended surveys, relative to standard occupancymodels. If parameter values could not be anticipated, pessimism

about detection probabilities avoided poor designs. Detection heterogeneity could require more or fewer repeat

surveys, depending on parameter values. If model assumptions were met, the approach with two survey methods

was inefficient. However, with poor anticipation of parameter values, with detection heterogeneity or with

removal sampling schemes, combining two surveymethods could improve estimates of occupancy.

4. Ignoring false positives can yield biased parameter estimates, yet false positives greatly complicate the design

of occupancy studies. Specific guidance for major types of false-positive occupancymodels, and for two assump-

tion violations common in field data, can conserve survey resources. This guidance can be used to design efficient

monitoring programmes and studies of species occurrence, species distribution or habitat selection, when false

positives occur during surveys.

Key-words: detection heterogeneity, detection probability, false positives, misidentification, occu-

pancymodels, presence–absence, study design

Introduction

The proportion of sample units occupied by a target species

has long been a state variable of interest for ecological ques-

tions related to species distribution modelling, meta-popula-

tion ecology and community ecology (Bailey, MacKenzie &

Nichols 2014). However, surveys of organisms typically

include false negatives, which bias estimates of occupancy (Gu

& Swihart 2004). MacKenzie et al. (2002) and Tyre et al.

(2003) developed unbiased estimators of occupancy probabil-

ity in the face of incomplete detection by analysing repeated

surveys of sample units. However, these estimators are biased

even by the low (e.g. 1–3%) false-positive probabilities that

have been documented in experimental aural surveys of birds

and amphibians (Alldredge et al. 2008; McClintock et al.

2010;Miller et al. 2012).

Recognizing the problem of false positives, Royle & Link

(2006) developed an estimator of occupancy that allowed for

false-positive detections. They parameterized detection proba-

bility as a 2-component finite mixture, with a true-positive

detection probability, p11, at occupied sample units and a false

detection probability, p10, at unoccupied sample units. With

the constraint that p11 > p10, the parameters are identifiable.

However, model results are ambiguous because the same

model can also be interpreted as a heterogeneous detection

model with no false positives (Royle & Link 2006). Subse-

quently, Miller et al. (2011) introduced false-positive occu-

pancy estimators that allow one to incorporate additional

survey information. With this approach, a surveyor may

record two observation states: uncertain detections and certain

detections. For example, an animal detected at close range

may generate a certain detection, while detection of a distant

animal may generate an uncertain detection. The model
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assumes a certain detection cannot be a false positive, while an

uncertain detection might be. Non-detections are always

uncertain, in that they might be due to true absences or false

negatives. Alternatively, Miller et al. (2011) proposed that sur-

veyors might use two survey methods, one of which generates

uncertain detections, while the other only generates certain

detections (see Ferguson, Conroy & Hepinstall-Cymerman

2015 for a Bayesian formulation). For example, an acoustic

survey might yield uncertain detections (false positives possi-

ble) while a capture survey might generate only certain detec-

tions (no false positives).

These new modelling methods raise questions about how

studies should be designed (Clement et al. 2014). In particu-

lar, there is a trade-off between the number of sample units

surveyed, and the number and type of surveys at each sample

unit. Guidance exists for designing standard occupancy

models (MacKenzie & Royle 2005; Bailey et al. 2007;

Guillera-Arroita, Ridout & Morgan 2010; Guillera-Arroita &

Lahoz-Monfort 2012, in press), but this guidance is unlikely

to be appropriate for false-positive models. Under a standard

occupancy model (MacKenzie et al. 2002), designing a study

requires selecting an appropriate number of repeat surveys,

K, given an anticipated probability of occupancy, w, and

probability of true-positive detection, p11 (MacKenzie &

Royle 2005). Under a two-observation-state model (Miller

et al. 2011), the optimal number of repeat surveys depends

on two additional parameters, p10 and b, the probability

that a true-positive detection will be classified as certain.

Under a two-method false-positive model (Miller et al. 2011),

sampling design requires selecting an appropriate number

of repeat surveys, T and S, for both the uncertain and the

certain survey methods, respectively. In addition to w, survey
design is affected by the probability of true-positive detection

for the certain method, r11, and the uncertain method, p11, as

well as the false-positive probability for the uncertain

method, p10.

Given the increasing use of false-positive occupancymodels,

guidance on effective study design would be useful for practi-

tioners. Therefore, I investigated the optimal allocation of

effort for false-positive occupancy models. For both the two-

observation-state model and the two-method model, I consid-

ered how variation in different parameter values and the rela-

tive cost of different survey methods affected the optimal

number of repeat surveys to perform. I also investigated how

deviations from model assumptions affected optimal design in

an effort to find robust designs. In particular, I considered how

optimal design was affected by (i) errors in pre-survey expecta-

tions of parameter values and (ii) unmodelled detection hetero-

geneity. Based on these analyses, I make recommendations on

how to allocate survey effort when designing false-positive

occupancy studies.

Materials andmethods

My goal was to identify optimal survey designs for false-positive occu-

pancy studies under various scenarios. In this study, survey design

consists of selecting the number and type of surveys to perform in each

sample unit. Given a fixed budget, the number of repeat surveys then

determines the number of surveyed sample units. I follow MacKenzie

& Royle (2005) in defining the optimal design as the design that pro-

duces the most accurate estimate of w, given a fixed budget, although

the accuracy of other parameter estimates could be considered as well

(Guillera-Arroita, Ridout&Morgan 2010). First, I describemy general

approach to investigating optimal survey design, and then I apply it to

both two-observation-statemodels and two-methodmodels.

MacKenzie & Royle (2005) used analytic methods to calculate

asymptotic variances for different study designs. Although such closed-

form solutions are convenient, they do not hold when the model is mis-

specified, which, unavoidably, is the case in many studies. Instead, I

used numerical methods to estimate variances and mean square errors.

More specifically, for each study design and scenario of interest (de-

scribed below), I used expected values to generate encounter histories,

each occurring at the expected frequency. I then used maximum-likeli-

hood estimation to estimate parameters and their variances on the logit

scale. Finally, I used the deltamethod to obtain variances on the proba-

bility scale (Williams, Nichols & Conroy 2002: 736). I completed all

analyses with ProgramR (version 3.1.2; RCore Team 2014).

I considered the most accurate design to be the one with the lowest

mean square error (variance + bias2) for w on the probability scale.

For correctly specified models, estimates were unbiased, and the most

accurate design corresponded to the most precise design (i.e. the one

generating the lowest variance in w). For correctly specified standard

occupancy models, this approach yielded results identical to MacKen-

zie & Royle (2005). For misspecified models (described below), esti-

mates were biased, so the mean square error and the optimal design

were affected by bias as well as variance.

Initially, I created scenarios that met all model assumptions and

identified optimal designs associated with different parameter values.

Preliminary investigations of two-methodmodels indicated that in con-

trast to standard occupancymodels, slight differences in parameter val-

ues produced very different optimal survey designs. These results

indicated that if the parameter values anticipated during the design

stage were incorrect, the selected design could be very different from

the true optimal design. I expect that errors in anticipating parameter

values are ubiquitous in field studies, and therefore, hedging strategies

protecting against such errors could benefit ecologists. A useful hedging

strategy would select a survey design that ensures adequate parameter

accuracy in the face of pre-survey parameter uncertainty. To identify

good hedging strategies, I estimated the variance for several similar sce-

narios with different optimal designs. I considered the design with the

lowest sum of variances across the set of scenarios to be the best strat-

egy in the face of uncertainty.

I also investigated optimal designs for cases when model assump-

tions were not met. In particular, unmodelled site-specific detection

heterogeneity is a common problem in ecological estimation with the

potential to severely bias results (Link 2003; Royle 2006; Miller et al.

2015). For example, differences among sites in habitat or animal den-

sity that affect detection can bias occupancy estimates unless properly

modelled. Furthermore, distinguishing between detection heterogene-

ity and heterogeneity due to false positives may be impossible (Royle &

Link 2006). To better understand how unmodelled site-specific detec-

tion heterogeneity would affect optimal design, I associated a standard

normal covariate with survey sites and made detection parameters lin-

ear functions (on the logit scale) of the covariate. By setting the coeffi-

cient on this covariate to one, I generated a high level of heterogeneity

in detection across sites. For example, with an average detection proba-

bility of 0�40, 90% of sites would have a detection probability between
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0�11 and 0�78. With an average detection probability of 0�01, the same

sites would have detection probabilities between 0�002 and 0�050. I
introduced heterogeneity to one or multiple detection parameters and

calculated the effect on optimal design.

For my analyses, I set the budget to 400 total surveys. For correctly

specified models, project budget does not affect the number of repeat

surveys because estimates are unbiased (MacKenzie & Royle 2005). In

contrast, for misspecified models, the budget affects survey effort and

therefore the relative size of bias and variance, and therefore, optimal

design. The various scenarios I investigated are illustrative, not exhaus-

tive. Therefore, I also provide Program R code to assist the interested

reader in investigating additional scenarios in Appendices S1 and S2

(Supporting Information).

TWO-OBSERVATION-STATE MODELS

Both occupancy, w, and true detection probability, p11, are known to

affect the optimal number of repeat surveys (MacKenzie & Royle

2005). I expected that false-positive probability, p10, and the probability

that a true detection will be classified as certain, b, would also affect

optimal survey design. Therefore, I identified the optimal survey design

when w = {0�2, 0�5, 0�8}, p11 = {0�2, 0�4, 0�6, 0�8}, p10 = {0�01, 0�05,
0�10} and b = {0�0, 0�2, 0�5, 0�8}, yielding 144 combinations of parame-

ter values. Note that when b = 0, the two-observation-state model

reduces to the Royle & Link (2006) model, while b = 1 corresponds to

a standard occupancymodel (MacKenzie et al. 2002).

To identify good hedging strategies in case it is not possible to accu-

rately predict parameter values prior to surveys, I estimated model

accuracy for several different scenarios. In particular, I set w = 0�5,
p10 = 0�05, b = 0�2 and estimated variance for p11 = {0�2, 0�4, 0�6}. I
then identified the design with the lowest sum of variances. I also inves-

tigated designs robust to simultaneous poor anticipation of the true val-

ues of p11, p10 and b. To do this, I set p11 = {0�2, 0�4}, p10 = {0�05, 0�10}
and b = {0�2, 0�5}, yielding eight scenarios. Again, I summed variances

across scenarios to identify robust designs.

I also investigated the effect of detection heterogeneity on optimal

survey design. I introduced detection heterogeneity through a site

covariate that affected (i) only p11, (ii) only p10, (iii) only b or (iv) all

three detection parameters. I considered the same 144 combinations of

parameter values considered previously and identified the optimal sur-

vey design for each scenario.

TWO-METHOD MODELS

For the two-method models, I considered how five sampling schemes

were affected by occupancy, w, the probability of true-positive detec-

tion for the certain method, r11, and the uncertain method, p11, the

false-positive probability for the uncertainmethod, p10, and the number

of surveys for the uncertain and certain methods, T and S. The first

sampling scheme was a standard approach in whichT and Swere fixed

across all sites. For parameters to be identifiable, T or S (or both) must

be ≥2. I allowed the special cases of T = 0 (standard occupancy) and

S = 0 (Royle–Link model). The other four schemes were variations on

a removal design in which surveys ceased when certain criteria were

met (Guillera-Arroita & Lahoz-Monfort in press). Under the removal

schemes, the number of surveys could be fixed, so that they were equal

at all surveyed sites, or varying so that surveys continued until a detec-

tion occurred, or a maximum survey number was reached. These two

options yielded four schemes: (i) a fixed-fixed scheme in whichT uncer-

tain surveys were performed at all sites, and then S certain surveys were

performed only at sites with uncertain detections; (ii) a fixed-varying

scheme in which T uncertain surveys were performed at all sites, and

then, only at sites with uncertain detections, certain surveys were per-

formed, ceasing when a detection occurred, or the maximum of S sur-

veys was reached; (iii) a varying-fixed scheme in which uncertain

surveys were performed at all sites, ceasing when a detection occurred

or the maximum of T surveys was reached, and then S certain surveys

were performed only at sites with uncertain detections; and (iv) a vary-

ing-varying scheme in which uncertain surveys were performed at all

sites, ceasing when a detection occurred or the maximum of T surveys

was reached, and then, only at sites with uncertain detections, certain

surveys were performed, ceasing when a detection occurred, or the

maximum of S surveys was reached. For completeness, I also consid-

ered a design consisting of 0 uncertain surveys and a varying number of

certain surveys performed at all sites. I report the results of this design

as a special case of scheme (iv). By discontinuing surveys after a detec-

tion, the removal schemes conserved resources for other sample units,

but estimation might be less accurate with fewer detections at each site.

Therefore, I simulated surveys using all five sampling schemes and

compared the accuracy of estimates from each. I identified the optimal

survey design when w = {0�2, 0�5, 0�8}, p11 = {0�2, 0�4, 0�6, 0�8},
p10 = {0�01, 0�05, 0�10} and r11 = {0�2}, yielding 36 combinations of

parameter values for each sampling scheme.

I also considered the relative cost of the two survey types, so that cer-

tain surveys might cost the same as, or five times more than, uncertain

surveys.

To identify good hedging strategies in the likely case of pre-survey

uncertainty about parameter values, I estimated estimator accuracy for

several different scenarios. Specifically, I set w = 0�5, r11 = 0�2,
p10 = 0�05 and estimated variance for p11 = {0�3, 0�45, 0�6}. I selected
p11 = 0�45 because the optimal survey design changed radically at this

value, and the other values are equidistant from this value. I also inves-

tigated the effect of simultaneous uncertainty about the true value of

both p11 and r11 on optimal design. I allowed p11 to vary as before and

set r11 = {0�1, 0�2, 0�3}, yielding nine scenarios. I identified robust

designs by summing variances across scenarios.

I also investigated the effect of detection heterogeneity on optimal

survey design for the standard and the varying-varying schemes with

equal costs for certain and uncertain survey methods with a total bud-

get of 400 surveys. I introduced detection heterogeneity through a site

covariate that affected (i) only p11, (ii) only p10, (iii) only r11 or (iv) all

three detection parameters. I considered the same 36 combinations of

parameter values considered previously and identified the optimal sur-

vey design for each scenario.

Results

TWO-OBSERVATION-STATE MODELS

When b = 0 under the two-observation-state model (i.e. the

Royle–Link model), the optimal number of repeat surveys at

each sample unit increased with w and p10, and decreased with

increases in p11 (Table 1). As b increased, the optimal number

of repeat surveys decreased towards the recommendations

associated with a standard occupancy model (MacKenzie &

Royle 2005).

Under pre-survey uncertainty about parameter values, an

effective hedging strategy was to increase repeat surveys at the

cost of fewer survey sites. For example, if w = 0�5, p10 = 0�05
and b = 0�2, then the optimal number of repeat surveys per

sample unit for p11 = {0�2, 0�4, 0�6} was 28, 10 and 5. If these
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scenarios were equally likely, the optimal hedging strategy was

to perform 21 repeat surveys, which was higher than the med-

ian (10) or mean (14�3) surveys for the three individual scenar-
ios. When I considered uncertainty in all three detection

parameters, so p11 = {0�2, 0�4}, p10 = {0�05, 0�10} and

b = {0�2, 0�5}, then the optimal numbers of surveys for the

eight scenarios were 42, 28, 18, 18, 13, 10, 8 or 7 repeat surveys.

If these scenarios were equally likely, the optimal hedging strat-

egy was 22 surveys per sample unit, higher than the median

(15�5) ormean (18) of the individual scenarios.

When I introduced heterogeneity in p11, the optimal number

of repeat surveys decreased when w = 0�2 and increased when

w = 0�8 (Table 2). If w = 0�5, the effect also depended on the

value of p10 and b. Heterogeneity in other detection parameters

could also increase or decrease the optimal number of repeat

surveys, depending on the combination of parameter values

(Tables S1–S3).

TWO-METHOD MODELS

Under a standard survey scheme (fixed number of uncertain

and certain surveys), the optimal survey design consisted of

either all certain surveys or all uncertain surveys, depending on

parameter values (Table 3). If p11 was low and/or p10 was suffi-

ciently high, the optimal design was to only use the certain

method, with S equal to the recommendations in MacKenzie

& Royle (2005). If p11 increased or p10 decreased, the optimal

design switched to using only the uncertain method, with T

equal to my recommendations for the Royle–Link model

(Table 1). If only the certain method was recommended, the

number of repeat surveys increased with w. If only the uncer-

tain method was recommended, the number of surveys

increased withw and p10, and decreased with p11.

Optimal survey designs were more diverse across the four

removal schemes (Table 4). Under numerous scenarios, the

Table 1. Optimal number of surveys for the two-observation-state occupancy model for different parameter values. w is probability of occupancy,

p11 is probability of true detection, p10 is probability of false detection, and b is the probability that a true detection will be classified as certain. Note

that b = 0 is equivalent to theRoyle–Link (2006)model

p11 p10

b = 0 b = 0�2 b = 0�5 b = 0�8
w w w w

0�2 0�5 0�8 0�2 0�5 0�8 0�2 0�5 0�8 0�2 0�5 0�8

0�2 0�01 17 20 25 15 18 23 12 15 20 9 11 16

0�05 41 40 47 26 28 37 15 18 25 9 11 16

0�10 118 109 126 35 42 58 15 18 26 9 11 16

0�4 0�01 8 9 11 7 8 10 6 7 9 4 5 7

0�05 11 11 13 9 10 12 6 7 10 5 5 7

0�10 18 17 20 12 13 16 7 8 11 5 5 7

0�6 0�01 5 5 6 5 5 6 4 4 5 3 3 4

0�05 5 6 7 5 5 6 4 4 6 3 3 4

0�10 8 8 9 6 6 8 4 5 6 3 3 4

0�8 0�01 3 4 4 3 3 4 3 3 4 2 2 3

0�05 3 4 4 3 3 4 3 3 4 2 2 3

0�10 5 4 4 3 4 4 3 3 4 2 2 3

Table 2. Optimal number of surveys, given a budget of 400 surveys, for the two-observation-state occupancy model, when there is heterogeneity in

the true detection probability, p11.w is probability of occupancy, p10 is probability of false detection, and b is the probability that a true detectionwill

be classified as certain

p11 p10

b = 0 b = 0�2 b = 0�5 b = 0�8
w w w w

0�2 0�5 0�8 0�2 0�5 0�8 0�2 0�5 0�8 0�2 0�5 0�8

0�2 0�01 10 27 30 11 23 51 9 18 34 7 15 25

0�05 19 32 42 13 29 58 10 19 35 7 15 25

0�10 21 39 44 15 29 59 10 18 34 7 15 25

0�4 0�01 7 14 18 7 13 26 5 9 17 4 8 13

0�05 8 17 21 7 15 30 5 10 18 4 8 13

0�10 12 22 27 8 17 33 6 10 18 4 8 13

0�6 0�01 5 7 13 5 7 12 4 6 9 3 4 7

0�05 4 8 13 4 8 16 4 6 10 3 4 7

0�10 6 12 16 5 9 18 4 6 11 3 4 7

0�8 0�01 4 5 6 3 4 6 3 3 5 2 2 4

0�05 3 4 7 3 4 7 3 3 5 2 2 4

0�10 5 6 8 3 4 8 3 3 5 2 2 4
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optimal survey design included a mix of both survey methods.

Only the varying-varying scheme included survey designs

restricted to the certain method because the other three

schemes required at least one uncertain survey. Patterns were

apparent among the survey designs, but violated by exceptions.

For example, the optimal number of surveys was generally low

for high values of p11, but an exception can be noted under the

varying-fixed scheme when w = 0�8, r11 = 0�2, p11 = 0�6,
p10 = 0�1. In general, as w increased, accuracy could be

improved by switching towards uncertain surveys, but an

exception is apparent under the fixed-varying scheme when

r11 = 0�2, p11 = 0�6, p10 = 0�1. The most accurate of the five

sampling schemes depended on the parameter values

(Table 5).Whenw = 0�2, low values of p11 were best addressed

with a standard scheme, while high values of p11 recommended

a fixed-varying scheme. When w = 0�5, the varying-varying

scheme produced themost accurate estimates ofw, unless both
p11 and p10 were high, and then the standard scheme was most

accurate. If w = 0�8, the varying-varying scheme was best,

although sometimes recommendations were identical to the

varying-fixed scheme.

Unsurprisingly, increasing the cost of certain surveys shifted

the optimal survey design towards uncertain surveys (Table 6).

A mixture of two survey types was never recommended. Simi-

larly, under the different removal schemes, the recommended

number of uncertain surveys increased, relative to the number

of certain surveys (Table 7). The most accurate of the five

Table 3. Optimal number of surveys for two-method occupancy mod-

els, using the standard design. w is probability of occupancy, p11 is

probability of detection with uncertain method, p10 is probability of

false detection with uncertainmethod, and r11, the probability of detec-

tion with certain method, is set to 0�2 in all calculations. In the table,

the numbers before and after the dash indicate the number of uncertain

and certain surveys, respectively

p11 p10

w

0�2 0�5 0�8

0�2 0�01 0–7 0–9 0–13
0�05 0–7 0–9 0–13
0�10 0–7 0–9 0–13

0�4 0�01 8–0 9–0 11–0
0�05 0–7 0–9 0–13
0�10 0–7 0–9 0–13

0�6 0�01 5–0 5–0 6–0
0�05 5–0 6–0 7–0
0�10 0–7 8–0 9–0

0�8 0�01 3–0 4–0 4–0
0�05 3–0 4–0 4–0
0�10 5–0 4–0 4–0

Table 4. Optimal number of surveys for two-method occupancymodels, using different removal schemes.w is probability of occupancy, p11 is prob-

ability of detection with uncertain method, p10 is probability of false detection with uncertain method, and r11, the probability of detection with cer-

tain method, is set to 0�2 in all calculations. In the table, the numbers before and after the dash indicate the number of uncertain and certain surveys,

respectively

p11 p10

Fixed-fixed Fixed-varying Varying-fixed Varying-varying

w w w w

0�2 0�5 0�8 0�2 0�5 0�8 0�2 0�5 0�8 0�2 0�5 0�8

0�2 0�01 8–11 12–8 18–7 8–17 10–19 14–24 12–13 17–11 37–4 0–11 0–13 0–19
0�05 8–11 10–11 15–13 8–14 10–17 13–22 13–11 18–12 25–14 0–11 0–13 0–19
0�10 8–11 10–12 13–15 8–14 9–16 12–22 15–10 20–11 26–14 0–11 0–13 0–19

0�4 0�01 5–7 9–0 11–0 4–16 5–17 7–21 6–11 9–7 19–0 5–18 6–21 19–0
0�05 4–9 6–7 13–0 4–13 5–15 7–20 6–10 8–10 38–0 5–14 6–17 0–19
0�10 4–9 5–9 8–10 4–13 5–15 6–20 6–10 8–10 12–12 0–11 0–13 0–19

0�6 0�01 3–6 5–0 6–0 3–14 5–0 6–0 4–9 8–0 10–0 3–19 4–21 10–0
0�05 3–7 6–0 7–0 3–11 3–14 7–0 3–9 5–7 14–0 3–14 4–17 14–0
0�10 3–8 8–0 9–0 3–12 3–14 4–19 3–9 5–9 68–0 3–13 4–16 0–19

0�8 0�01 3–1 4–0 4–0 2–14 4–0 4–0 2–8 5–0 6–0 2–19 5–0 6–0
0�05 3–1 4–0 4–0 2–10 4–0 4–0 2–9 6–0 7–0 2–15 2–18 7–0
0�10 3–2 4–0 4–0 2–9 4–0 4–0 2–9 6–1 10–0 2–13 2–16 10–0

Table 5. The sampling scheme with the lowest standard error on w,
when the costs of certain and uncertain surveys are equal. Schemes

include S = standard, FF = fixed-fixed, FV = fixed-varying,

VF = varying-fixed and VV = varying-varying, described in text. w is

probability of occupancy, p11 is probability of detection with uncertain

method, p10 is probability of false detection with uncertain method,

and r11, the probability of detection with the certain method, is set to

0�2 in all calculations

p11 p10

w

0�2 0�5 0�8

0�2 0�01 S VV VV

0�05 S VV VV

0�10 S VV VV

0�4 0�01 FV VV VV = VF

0�05 FV VV VV

0�10 S VV VV

0�6 0�01 FV VV VV = VF

0�05 FV VV VV = VF

0�10 FV VV VV

0�8 0�01 FV VV = VF VV = VF

0�05 FV S = FF = FV VV = VF

0�10 FV S = FF = FV VV = VF
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sampling schemes depended on the parameter values

(Table 8). When w = 0�2 or 0�5, the best strategy was typically
to use a fixed number of uncertain surveys, meaning that the

standard, fixed-fixed and fixed-varying schemes all made the

same recommendation, unless p11 was very low. If w = 0�8, the
best strategy was generally to use a varying number of uncer-

tain surveys, so that the varying-fixed and varying-varying

schemesmade the same recommendation.

I also sought strategies that would be robust to errors in pre-

survey expectations about parameter values. Under a standard

design, if w = 0�5, r11 = 0�2 and p10 = 0�05, then p11 = 0�45
was noteworthy because at or below this value, the optimal

strategy was to perform nine certain surveys, while above this

value, the optimal strategy was to perform nine uncertain

surveys (Fig. 1). Although survey design was very different,

accuracy of w estimates was very similar. When p11 was lower

than anticipated, at 0�3, relying on uncertain surveys greatly

increased variance in w (Fig. 2a). When p11 was higher than

anticipated, at 0�6, uncertain surveys outperformed certain sur-

veys, but the difference was modest (Fig. 2b). As a result, if

there was pre-survey uncertainty about the true value of p11,

the best hedging strategy was to assume a low value for p11,

which favoured certain surveys. Similarly, if there was uncer-

tainty about the true value of r11, the best hedging strategy was

to assume a low value and favour uncertain surveys. When

there was simultaneous uncertainty about both p11 and r11,

each individual scenario considered recommended using only

one survey method or the other. However, when I summed

variances across the nine scenarios, the best hedging strategy

was to use seven uncertain and five certain surveys (Fig. 3).

I also identified the optimal design for the standard scheme

when detection heterogeneity occurred in p11. When p11 was

high and heterogeneous, using uncertain surveys improved the

variance, but worsened bias. By using a combination of both

survey methods, it was possible to moderate bias and variance

and improve accuracy. Accordingly, the optimal design fre-

quently included a mix of both survey types (Table 9). Unex-

pectedly, there were additional cases where p11 was low, and

yet the optimal design included both survey types, such as

w = 0�5, p11 = 0�2, p10 = 0�01, r11 = 0�2. In these cases, p11 was

overestimated and p10 was underestimated such that the esti-

mate ofwwas relatively accurate. Heterogeneity in other detec-

tion parameters also affected the optimal survey designs under

the standard scheme (Table S4) and the varying-varying

scheme (Table S5).

Discussion

Standard occupancy models generate biased estimates of

occupancy if false positives occur during surveys (McClintock

et al. 2010; Miller et al. 2011). Accordingly,

Table 6. Optimal number of surveys for two-method occupancy mod-

els, using the standard design, assuming certain surveys cost five times

uncertain surveys. w is probability of occupancy, p11 is probability of

detection with uncertain method, p10 is probability of false detection

with uncertain method, and r11, the probability of detection with cer-

tain method, is set to 0�2 in all calculations. In the table, the numbers

before and after the dash indicate the number of uncertain and certain

surveys, respectively

p11 p10

w

0�2 0�5 0�8

0�2 0�01 17–0 20–0 25–0
0�05 0–7 0–9 0–13
0�10 0–7 0–9 0–13

0�4 0�01 8–0 9–0 11–0
0�05 11–0 11–0 13–0
0�10 18–0 17–0 20–0

0�6 0�01 5–0 5–0 6–0
0�05 5–0 6–0 7–0
0�10 8–0 8–0 9–0

0�8 0�01 3–0 4–0 4–0
0�05 3–0 4–0 4–0
0�10 5–0 4–0 4–0

Table 7. Optimal number of surveys for two-method occupancy models, using the removal design, assuming certain surveys cost five times uncer-

tain surveys. w is probability of occupancy, p11 is probability of detection with uncertain method, p10 is probability of false detection with uncertain

method, and r11, the probability of detection with certain method, is set to 0�2 in all calculations. In the table, the numbers before and after the dash

indicate the number of uncertain and certain surveys, respectively

p11 p10

Fixed-fixed Fixed-varying Varying-fixed Varying-varying

w w w w

0�2 0�5 0�8 0�2 0�5 0�8 0�2 0�5 0�8 0�2 0�5 0�8

0�2 0�01 17–0 20–0 25–0 9–11 20–0 25–0 13–9 36–1 50–0 12–14 15–17 50–0
0�05 9–8 40–0 47–0 8–12 11–13 16–18 13–8 18–9 26–12 12–12 15–14 0–19
0�10 9–8 12–9 17–13 9–12 11–14 15–19 15–8 19–9 25–13 0–11 0–13 0–19

0�4 0�01 8–0 9–0 11–0 8–0 9–0 11–0 7–7 15–0 19–0 6–15 15–0 19–0
0�05 11–0 11–0 13–0 11–0 11–0 13–0 6–8 25–0 38–0 5–12 25–0 38–0
0�10 18–0 17–0 20–0 18–0 17–0 20–0 6–8 8–8 83–0 5–12 7–14 9–19

0�6 0�01 5–0 5–0 6–0 5–0 5–0 6–0 8–0 8–0 10–0 3–14 8–0 10–0
0�05 5–0 6–0 7–0 5–0 6–0 7–0 4–7 11–0 14–0 3–12 11–0 14–0
0�10 8–0 8–0 9–0 8–0 8–0 9–0 3–7 17–0 68–0 3–12 17–0 68–0

0�8 0�01 3–0 4–0 4–0 3–0 4–0 4–0 5–0 5–0 6–0 5–0 5–0 6–0
0�05 3–0 4–0 4–0 3–0 4–0 4–0 6–0 6–0 7–0 6–0 6–0 7–0
0�10 5–0 4–0 4–0 5–0 4–0 4–0 5–1 7–0 10–0 2–12 7–0 10–0

Published 2016. This article is a U.S. Government work and is in the public domain in the USA, Methods in Ecology and Evolution

6 M. J. Clement



recommendations for designing occupancy surveys have

emphasized the need to adopt protocols intended to eliminate

false positives (MacKenzie et al. 2006). Adopting strict crite-

ria for detections can reduce false positives, but also lower

detection probabilities, reducing accuracy of occupancy esti-

mates (Miller et al. 2011). However, in some cases it may be

difficult to significantly reduce false-positive probabilities

through stricter protocols alone (Miller et al. 2012). Alterna-

tively, more reliable but expensive survey methods may be

adopted, reducing the number of samples that can be col-

lected and therefore the precision of occupancy estimates.

The advent of models that can estimate occupancy in the

presence of false positives (Royle & Link 2006; Miller et al.

2011; Chambert, Miller & Nichols 2015) enables surveyors to

consider additional survey methods that previously would

have been rejected. However, the availability of more choices

also raises new questions about survey design.

TWO-OBSERVATION-STATE MODELS

The optimal design for two-observation-state models requires

more repeat surveys than a standard occupancy model in

which the assumption of no false-positive detections is met. At

the same time, a well-designed two-observation-state study

requires fewer repeat surveys than a Royle–Link false-positive

model, demonstrating that the ability to classify a subset of

detections as certain can improve efficiency when false posi-

tives occur. If available survey methods allow one to achieve a

high (>0�6) value for p11 or b, the gains in efficiency over the

Royle–Link approach are large, while avoiding the bias in a

standard occupancy model when false positives occur. How-

ever, if both p11 and b are low, accurate estimates of w require

extensive surveys.

I expect that in most cases, it will be difficult to anticipate

detection probabilities prior to conducting surveys. If p11 or b

is high, survey design is relatively robust to such errors in prog-

nostication. However, if p11 and b are low, poor prognostica-

tion can lead to poor survey design. In this case, I found that

pessimism about detection probabilities, and therefore use of

additional repeat surveys, helped avoid poor outcomes.

If the data include unmodelled detection heterogeneity,

additional repeat surveys reduce bias, but also worsen preci-

sion (due to fewer sites being surveyed), so that the best survey

strategy is not immediately obvious. I found that heterogeneity

in p11 caused occupied sites with low p11 to generate detection

histories that mimic false positives. This problem was greater

when w was high, so additional repeat surveys improved accu-

racy, while fewer repeat surveys were appropriate when w was

low. Of course, the preferable strategy would be to identify and

model sources of heterogeneity. For example, if detection

probability varies across sites with vegetation density, using

vegetation metrics as model covariates will reduce heterogene-

ity and bias. Accordingly, optimal design will revert from the

values in Table 2 to the values in Table 1.

TWO-METHOD MODELS

The two-method model was introduced to improve occupancy

estimation when false positives occur. However, if all model

assumptions were met and parameter values were correctly

anticipated, then under a standard scheme that uses a fixed

number of repeat surveys at each site, I found that it was

always best to use a single survey method. Thus, optimal

design should follow the Chesterfield Principle: ‘Whatever is

worth doing at all, is worth doing well’, (Chesterfield 1774).

Stated simply, dividing effort between two methods yielded

poorer estimates of detection probability for both survey types,

resulting in less precise occupancy estimates. As expected, high

values for p11 and low values for p10 favoured the uncertain

Table 8. The sampling scheme with the lowest standard error on w,
when the cost of certain surveys is five times uncertain surveys. Schemes

include S = standard, FF = fixed-fixed, FV = fixed-varying,

VF = varying-fixed and VV = varying-varying, described in text. w is

probability of occupancy, p11 is probability of detection with uncertain

method, p10 is probability of false detection with uncertain method,

and r11, the probability of detection with certain method, is set to 0�2 in
all calculations

p11 p10

w

0�2 0�5 0�8

0�2 0�01 FV S = FF = FV VV = VF

0�05 FV VV VV

0�10 S VV VV

0�4 0�01 S = FF = FV S = FF = FV VV = VF

0�05 S = FF = FV S = FF = FV VV = VF

0�10 S = FF = FV S = FF = FV S = FF = FV

0�6 0�01 S = FF = FV S = FF = FV VV = VF

0�05 S = FF = FV S = FF = FV VV = VF

0�10 S = FF = FV S = FF = FV VV = VF

0�8 0�01 S = FF = FV VV = VF VV = VF

0�05 S = FF = FV S = FF = FV VV = VF

0�10 S = FF = FV S = FF = FV VV = VF

Fig. 1. Variance of estimates of w under several survey designs when

w = 0�5, r11 = 0�2, p11 = 0�45, p10 = 0�05. Darker colours indicate

higher variance. Square 1 is the optimal design. Square 2 is optimal

when p11 = 0�46.
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method, and my analysis provides some guidance about what

constitutes ‘high’ and ‘low’ (Table 1). However, it might be dif-

ficult to correctly anticipate parameter values, and in this case,

using both survey methods can be a good hedging strategy. As

detection parameters change, estimator precision responds

nonlinearly, so misplaced optimism about detection probabili-

ties may be particularly costly (Fig. 2). In this case, putting

similar effort into each survey method will not produce the

most precise estimate of occupancy (which will be found in one

of the numbered blocks in Fig. 3), but it provides good insur-

ance against a highly imprecise estimate. Accordingly, in a

study of sufficient duration, a potential strategy would be to

use multiple survey methods initially, and then to phase out all

but one method after learning about the relative performance

of each survey method (Guillera-Arroita, Ridout & Morgan

2014).

For a wide variety of parameter values, the varying-varying

scheme (uncertain surveys stop after a detection, followed by

certain surveys that stop after a detection) generated the most

precise estimates of occupancy, similar to the results of

MacKenzie & Royle (2005). However, there are at least two

reasons to prefer a standard scheme (a fixed number of uncer-

tain and certain surveys). In a varying scheme, surveys stop

after a single detection, so detection histories (for each

(a) (b)

Fig. 2. Variance of estimates ofw under several survey designs whenw = 0�5, r11 = 0�2, p10 = 0�05. Darker colours indicate higher variance. Square

1 is the optimal designwhen p11 = 0�45 and square 2 is optimal when p11 = 0�46. (a) Scenario with p11 = 0�3. (b) Scenario with p11 = 0�6.

Fig. 3. Sum of variance in estimates of w under several survey designs

when w = 0�5, p10 = 0�05, p11 = 0�3, 0�45 or 0�6, and r11 = 0�1, 0�2 or

0�3.Darker colours indicate higher variance. Numbers indicate optimal

designs for individual scenarios, while the large H indicates the best

hedging strategy.

Table 9. Optimal number of surveys for two-method occupancy

model, given a budget of 400 surveys, using the standard design, with

heterogeneity in p11. w is probability of occupancy, p11 is probability of

detection with uncertain method, p10 is probability of false detection

with uncertain method, and r11, the probability of detection with cer-

tain method, is set to 0�2 in all calculations. In the table, the numbers

before and after the dash indicate the number of uncertain and certain

surveys, respectively

p11 p10

w

0�2 0�5 0�8

0�2 0�01 0–7 3–3 4–7
0�05 0–7 0–9 0–13
0�10 0–7 0–9 0–13

0�4 0�01 2–1 2–2 3–6
0�05 0–7 2–1 2–4
0�10 0–7 0–9 2–2

0�6 0�01 2–1 2–1 2–4
0�05 4–1 2–1 2–2
0�10 5–2 4–4 2–1

0�8 0�01 3–0 2–1 2–1
0�05 3–0 4–1 2–1
0�10 3–1 3–2 2–1
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method) will contain at most one detection. If detection prob-

abilities are constant through time and space, as in my simula-

tions, these detection histories are sufficient to obtain

unbiased estimates of occupancy. However, if detection prob-

abilities vary, then space, time and mixture parameters

become confounded. A standard scheme, where multiple

detections can be observed at a single site, is better suited to

disentangling these processes. Given that detection often var-

ies by time or location, researchers may benefit from selecting

a standard scheme due to the additional protection against

detection heterogeneity and bias (Guillera-Arroita & Lahoz-

Monfort in press). Secondly, the varying schemes imply that

uncertain surveys occur before certain surveys, but this may

not always be desirable. Sequential surveys are appealing

because more expensive certain surveys can be limited to

promising sites identified by the uncertain survey. However, if

detection probabilities vary through time, it might be more

appropriate to intersperse the two survey methods. And in

some cases, it may be cost-effective to perform surveys simul-

taneously, such as simultaneous visual and aural surveys. I

also note that if model assumptions are met, using only one

survey method is more efficient than a two-phase survey

(Table 3).

When the data included unmodelled heterogeneity in p11,

estimates of w could be improved by using both survey meth-

ods. Often this approach worked because the uncertain

method improved precision, while the certain method reduced

bias. However, a review of the results indicated that some of

the ‘optimal’ designs achieved a low variance in w by misesti-

mating all of the detection parameters, with p10 typically near

0. While these designs produced accurate estimates of w, I rec-
ommend caution before using this strategy. It would be

preferable to select or modify survey methods to reduce

heterogeneity to the extent possible or collect information on

covariates that can be used to explain heterogeneity in the

model. Nonetheless, my results suggest that a combination of

survey methods may improve occupancy estimates if detec-

tion heterogeneity persists.

Because false-positive occupancy models are relatively new,

little guidance exists for study design (Clement et al. 2014).

Miller et al. (2015) compared a false-positive occupancy anal-

ysis of frog surveys using an uncertain method against an

analysis that incorporated additional data from a certain-

detection survey and found the second approach yielded a

lower mean absolute error. Their work highlights how mak-

ing use of additional available survey data and how data with

certain detections can improve estimate accuracy. However,

when allocating new survey effort, I found that if all model

assumptions are met under a standard scheme, then just one

survey method should be selected. But if model assumptions

are not met, then multiple survey methods could be war-

ranted.

I also note that the two-method approach does not fully

resolve the ambiguity present in the Royle–Link model. For

example, we might interpret a set of parameters, w, r11, p11
and p10 as indicating that detection probabilities for the two

methods are r11 and p11 at w occupied sites, with false-positive

probabilities of 0 and p10 at 1 � w unoccupied sites. How-

ever, we could equally interpret this result as true-positive

detection heterogeneity so that all sites are occupied, and w is

a mixture parameter indicating the share of sites with high

detection probability (r11 and p11), while 1-w indicates the

share of sites with low detection probability (0 and p10). To

distinguish between these interpretations, we must resort to a

priori plausibility, rather than mathematical certainty, as with

the Royle–Link approach. Furthermore, I note that there is

no particular requirement that the second method generates

no false positives. Instead, we can allow r10 > 0 and estimate

this parameter, just as we do p10. Such an approach may raise

further ambiguity about how to interpret results, but it may

be justified. For example, acoustic surveys for bats may be

plagued by false-positive detections (Clement et al. 2014), but

capture surveys can also yield misidentifications (Weller et al.

2007). Given that low false-positive probabilities can bias

occupancy estimates, estimating false-positive probabilities

for both methods might be appropriate in some circum-

stances.

My results are based on asymptotic approximations to vari-

ances, which hold when sample sizes are large. Smaller sample

sizes will yield greater variances and possibly bias as well. By

providing a lower bound on variances, my results highlight

general issues of effort allocation, and the results may be accu-

rate for those with large sample sizes. However, ecological

studies often rely on small sample sizes, so a thorough

approach to study design would include simulation studies to

obtain variance estimates corresponding to the planned survey

effort (Bailey et al. 2007; Guillera-Arroita, Ridout & Morgan

2010). One simulation study of standard occupancy models

indicated that when sample sizes were small, the optimal num-

ber of repeat surveys was greater than when sample sizes were

large (Guillera-Arroita, Ridout &Morgan 2010).

Additional complications could be considered. For exam-

ple, the assumption that detections classified as certain are

never false positives might be violated (Ferguson, Conroy &

Hepinstall-Cymerman 2015). One could investigate the effect

of this violation on optimal design or the effect of more con-

servative or liberal protocols for classifying detections as cer-

tain on the accuracy of model estimates (Miller et al. 2015).

Alternatively, more cost structures could be considered. For

example, the initial survey of a site might be more expensive

than subsequent surveys. In this case, increasing repeat sur-

veys would presumably improve accuracy (MacKenzie &

Royle 2005). Similarly, the marginal cost of using a second

survey method might be negligible, as when conducting simul-

taneous visual and aural surveys. The number of questions I

investigated was necessarily limited, but the R functions in

Appendices S1 and S2 may be useful in exploring additional

design questions.
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