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Abstract

There is intense interest in basic and applied ecology about the effect of global change on current and future species

distributions. Projections based on widely used static modeling methods implicitly assume that species are in equilib-

rium with the environment and that detection during surveys is perfect. We used multiseason correlated detection

occupancy models, which avoid these assumptions, to relate climate data to distributional shifts of Louisiana Water-

thrush in the North American Breeding Bird Survey (BBS) data. We summarized these shifts with indices of range

size and position and compared them to the same indices obtained using more basic modeling approaches. Detection

rates during point counts in BBS surveys were low, and models that ignored imperfect detection severely underesti-

mated the proportion of area occupied and slightly overestimated mean latitude. Static models indicated Louisiana

Waterthrush distribution was most closely associated with moderate temperatures, while dynamic occupancy models

indicated that initial occupancy was associated with diurnal temperature ranges and colonization of sites was associ-

ated with moderate precipitation. Overall, the proportion of area occupied and mean latitude changed little during

the 1997–2013 study period. Near-term forecasts of species distribution generated by dynamic models were more sim-

ilar to subsequently observed distributions than forecasts from static models. Occupancy models incorporating a

finite mixture model on detection – a new extension to correlated detection occupancy models – were better sup-

ported and may reduce bias associated with detection heterogeneity. We argue that replacing phenomenological sta-

tic models with more mechanistic dynamic models can improve projections of future species distributions. In turn,

better projections can improve biodiversity forecasts, management decisions, and understanding of global change

biology.
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Introduction

There is widespread interest in contemporary and

future effects of climate change on plant and animal

distributions because of the relevance for predicting

changes in biodiversity (Bellard et al., 2012), developing

conservation strategies (Wilson et al., 2005), and select-

ing effective management actions (Rodr�ıguez et al.,

2007). The advent of anthropogenic climate change has

lent more urgency to the topic, given the potential for

ecological upheaval (Thomas et al., 2004). A common

approach for understanding these species–climate rela-

tionships is to statistically estimate the relationship

between climate covariates and the probability of pres-

ence of a species of interest during a specified period of

time (Guisan & Thuiller, 2005). Popular methods

include MAXENT and ENFA for detection-only data

and GLMs, GAMs, classification trees, and neural

networks for detection/nondetection data, among other

methods (Heikkinen et al., 2006).

However, various challenges remain when modeling

species–climate relationships, two of which we high-

light. First, most modeling approaches do not account

for imperfect detection even though it is common for

individuals and species to go undetected during eco-

logical surveys (Alldredge et al., 2007; Pacifici et al.,

2008). If false negatives occur, then statistical models

will estimate the probability of obtaining a detection,

rather than the probability of presence. In turn, the

probability of presence and species–climate relation-

ships will be misestimated (Tyre et al., 2003), especially

when detection varies across the study area (Gu & Swi-

hart, 2004). Imperfect detection is especially relevant

when we are interested in changes in distribution

because such changes are more likely at range margins,

where density of individuals is low (Mehlman, 1997)

and therefore false negatives more likely (Royle &

Nichols, 2003). Whether at range margins or interiors,

false negatives also generate biased estimates of
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colonization, local extinction, and turnover rates (K�ery

et al., 2013). Although occupancy models that account

for imperfect detection have been widely used

(MacKenzie et al., 2006), they have rarely been applied

to the large-scale, long-term data relevant to climate

change because large surveys typically lack the

repeated surveys usually required for occupancy

modeling (Ill�an et al., 2014).

Second, most common modeling approaches use sta-

tic models to correlate the distribution of detections in a

time interval to climate characteristics in the same time

interval. As such, these models are primarily phe-

nomenological and merely describe the pattern of spe-

cies distributions rather than the process generating the

distribution (Pearson & Dawson, 2003; Dormann et al.,

2012). Projections developed from such correlative

models assume that species are in equilibrium with cli-

mate both during the period of data analysis and the

period targeted by projections (Guisan & Thuiller, 2005;

Pagel & Schurr, 2012). However, species are commonly

out of equilibrium with the environment (Zhu et al.,

2012), whether due to simple environmental and demo-

graphic stochasticity or sustained climate change. Such

disequilibrium is especially important when we study

changes in distribution because local populations are

most likely to be in flux at range margins (Mehlman,

1997; Yackulic et al., 2015).

A more mechanistic approach would recognize that

the current distribution of a species is a function of pre-

vious climate and dispersal constraints, as well as cur-

rent climate (Dormann et al., 2012; K�ery et al., 2013).

Dynamic occupancy models (MacKenzie et al., 2003)

can serve as an alternative to static correlative models

or data-intensive physiology-based process models (La

Sorte & Jetz, 2010; Dormann et al., 2012). These

dynamic occupancy models focus on the relationships

between covariates and vital rates (colonization and

extinction rates), as these permit prediction of range

change in the absence of equilibrium. One approach to

dynamic species distribution modeling is to model spe-

cies occurrence as a Markov process in which the prob-

ability of occurrence at time t is a function of the

probability of occurrence at time t–1 (MacKenzie et al.,

2003). By modeling a population-level process, these

dynamic distribution models can incorporate greater

ecological realism. Furthermore, by breaking free of the

equilibrium assumption, dynamic models can improve

projections of species distributions (Pagel & Schurr,

2012; Yackulic et al., 2015). Although a number of

authors have advocated dynamic models (e.g., Guisan

& Thuiller, 2005), they have rarely been applied to

large-scale, long-term data.

Recent extensions to occupancy models (Hines et al.,

2010, 2014) enable estimation of detection probabilities

from certain types of spatially replicated surveys,

rather than the temporally replicated surveys usually

used in occupancy modeling. Thus, it is now possible

to fit dynamic occupancy models to North American

Breeding Bird Survey data (BBS; Pardieck et al., 2015).

The BBS is one of the most geographically extensive

bird surveys conducted today, and it has been widely

used to study the effects of climate change on birds

(e.g., Robbins et al., 1989; Zuckerberg et al., 2009; Ill�an

et al., 2014). In this paper, we investigate the utility of

dynamic correlated detection occupancy models (Hines

et al., 2014) for estimating changes in the breeding dis-

tribution of Louisiana Waterthrush (Parkesia motacilla),

while accounting for imperfect detection and dynamic

population processes in BBS data. We use the resulting

estimates to develop some simple indices to quantify

changes in distributions through time. We then com-

pare the dynamic correlated detection occupancy

approach to selected alternative approaches that do not

account for imperfect detection and/or dynamic pro-

cesses in order to investigate the value of dynamic

models that account for imperfect detection.

Materials and methods

Data

We used data from the North American Breeding Bird Survey

(www.pwrc.usgs.gov/BBS/RawData/) and the University of

East Anglia Climate Research Unit Time Series Data (CRU;

Harris et al., 2014; http://badc.nerc.ac.uk/browse/badc/

cru/data/cru_ts/cru_ts_3.22/data/) to estimate the effect of

climate on the distribution of breeding Louisiana Waterthrush,

a migratory warbler that breeds in North America and winters

in Central America. This species nests and forages for insects

in riparian habitat. We selected Louisiana Waterthrush for

analysis because, as an early breeder (Mulvihill et al., 2009),

we expected that detection in late spring might be low, neces-

sitating models that account for imperfect detection. In addi-

tion, the Louisiana Waterthrush’s breeding range is entirely

within the extent of the BBS survey, allowing for estimation of

the entire breeding distribution (Barbet-Massin et al., 2010).

The BBS was initiated in 1966 and includes over 5000 sur-

vey routes across the United States and southern Canada,

approximately 3000 of which are surveyed in a given year.

Each route is surveyed by a skilled volunteer on 1 day per

year. Surveys are timed to coincide with the peak of territorial

behavior, typically late May to early July, depending on lati-

tude. Each route traces approximately 39.4 km along sec-

ondary roads. Surveyors stop at regular intervals

approximating 800 m, as safety and road conditions allow,

and perform a 3-min roadside point count, generating 50

counts per route. We used BBS data because their great geo-

graphic and temporal extent is suitable for investigating distri-

butional changes, and we developed a modeling approach

that is appropriate for the data structure.
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Although BBS data are available from 1966, the digital data

that are currently available do not include stop-specific data

prior to 1997. Therefore, we used data from 1997 to 2013. From

the pool of all BBS routes, we selected 2627 routes from the

eastern United States and Canada that have been surveyed

since 1997, only using data from acceptable surveys (i.e.,

acceptable weather, date, time of day, stops; reported by BBS

as ‘runtype = 1’). On the rare occasions a route had multiple

acceptable surveys per year, we used data from the first

acceptable survey. The selected routes ranged from Florida to

Texas, South Dakota, Ontario, and Nova Scotia. This region

encompassed the entire breeding range of the Louisiana

Waterthrush with a buffer. We excluded routes outside the

states and provinces mentioned above because excessive

absences can distort the estimated species–environment rela-

tionship and predict presence where the species is certain to

be absent (Austin & Meyers, 1996) and to reduce computing

time. Finally, we converted counts of birds at each stop along

each BBS route to detection/nondetection data suitable for

occupancy modeling. This conversion sacrificed data richness,

but accounting for imperfect detection in BBS counts of birds

typically requires simplifying assumptions (e.g., Ill�an et al.,

2014) or incorporation of additional data sources (e.g., Hooten

et al., 2007).

The CRU data set contains high-resolution (0.5°) grid data

for common surface climate variables (Harris et al., 2014). The

data are obtained from over 6000 weather stations around the

globe and interpolated to areas without weather stations. The

result is a monthly time series of climate data from 1901 to

2013 covering all land masses except Antarctica. We used

CRU data because it covered the entire region of the BBS

surveys at a monthly resolution.

While the potential pool of climatic predictors is limitless,

we selected five covariates that are reasonably uncorrelated,

widely used, and relatively effective for modeling species

ranges (Barbet-Massin & Jetz, 2014). In particular, we used a

subset of the ‘bioclim’ variables: annual mean temperature,

mean diurnal temperature range, mean temperature of the

wettest quarter, annual precipitation, and precipitation of the

warmest quarter (Busby, 1991). We calculated the five covari-

ates using CRU data on precipitation, maximum temperature,

and minimum temperature as inputs to the ‘biovars’ function

in the ‘dismo’ package (v. 1.0-5, Hijmans et al., 2014) in pro-

gram R (v. 3.1.1, R Core Team 2014). We calculated these

covariates from the 12 months prior to the BBS survey. For

example, the average temperature in each grid cell for 2013

was calculated using data from June 2012 to May 2013. We

then related climate covariates to BBS routes by identifying

the grid cell containing the first stop on the BBS route and

assigning the climate of that cell to the entire route. To

improve model convergence, we centered and scaled all

covariates by subtracting the mean and dividing by the stan-

dard deviation.

Model development

Hines et al. (2014) proposed a dynamic correlated detection

occupancy model with the following parameters:

w = Pr (route occupied during the first season of surveys);

h = Pr (species available at stop | route occupied and species

unavailable at previous stop);

h’ = Pr (species available at stop | route occupied and species

available at previous stop);

p = Pr (detection at a stop | route occupied and species avail-

able at stop).

et = Pr (route is not occupied in season t + 1 | occupied in sea-

son t); and

ct = Pr (route is occupied in season t + 1 | not occupied in sea-

son t).

Note that if a species is present on a route, it may be absent

from stops on that route. To distinguish between these two

spatial scales, we use the term ‘occupied’ when a species is

present on a route and the term ‘available’ when a species is

present at a specific stop (Nichols et al., 2009). Hines et al.

(2010, 2014) developed a model likelihood that allows these

parameters to be modeled as functions of route- and year-spe-

cific covariates, while detection parameters can also be influ-

enced by stop-specific covariates (MacKenzie et al., 2006).

Parameters can then be estimated using maximum-likelihood

estimation in program PRESENCE using a quasi-Newton

algorithm (Hines, 2006).

Because the BBS is conducted at a large scale, with different

observers, habitats, and survey conditions, it seems likely that

detection probability could vary among sites despite the stan-

dardization in the survey protocol. If unaddressed, such

detection heterogeneity can bias occupancy estimates

(MacKenzie et al., 2002). Some studies have used random-

effects models to account for observer ability (Link & Sauer,

2002), but this is not possible with our computational

approach. Therefore, to account for differences in detection

probability across routes, we used a finite mixture model on

detection (Norris & Pollock, 1996; Pledger, 2000). This

approach accommodates greater variance in detection proba-

bilities by replacing the basic binomial detection model with

two binomial distributions, p1 and p2, and a mixing parameter,

x, that indicates the relative weight of the two distributions

(Royle, 2006). Although a simplification of biological reality,

this approximation has been shown to perform well in various

applications (Pledger, 2000). Equations developing this new

extension to the occupancy model are presented in

Appendix S1.

Analysis

Our overall goal was to compare results from models that

ignore population dynamics and imperfect detection to models

that account for these factors when (i) estimating the relation-

ship between distributional shifts in breeding LouisianaWater-

thrush and climate covariates, (ii) summarizing distributional

shifts with indices, and (iii) projecting distributional shifts.

Specifically, we modeled the relationship between Louisiana

Waterthrush presence and climate covariates using a GLM

with a logistic link (Heikkinen et al., 2006), a static correlated

detection occupancy model (Hines et al., 2010), a dynamic cor-

related detection occupancy model (Hines et al., 2014), and a

Markov process model that assumes detection probability is 1
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(Erwin et al., 1998). This set of modeling approaches is not

intended to be exhaustive. Rather the methods were selected as

representing all combinations of general modeling approaches

for dealing with the features of emphasis in this paper (nonde-

tection, dynamics). Specifically, we used one model, dynamic

occupancy, that incorporated both features of emphasis (non-

detection, dynamics); one, static occupancy, that dealt with

nondetection but not dynamics; another (Markov) that

included dynamics but not nondetection; and a final one

(GLM) that included neither dynamics nor nondetection. We

then used results of these four modeling approaches to investi-

gate the effects of imperfect detection and static models on

indices of change and projections of future change.

The response variable in our models was presence or

absence of birds in the area sampled by each BBS route during

a specific year. In contrast, many analyses of BBS data use

detection of birds over the previous 5 or 10 years as a

response variable (e.g., Barbet-Massin & Jetz, 2014; Ill�an et al.,

2014), which appears to be an ad hoc method for dealing with

imperfect detection. However, combining survey years does

not eliminate the problem of nondetection, reduces the size of

the data set, obscures population dynamics occurring within

the 5 or 10 year window, and can distort species–climate rela-

tionships because models relate presence in one year with cli-

mate in different (possibly subsequent) years. With occupancy

modeling, we can estimate presence from annual data, or, if

there is a genuine ecological interest in the presence of a spe-

cies over an extended time period, occupancy models could

estimate this state variable as well.

Our predictor variables were annual climate measurements.

Many studies of the ecological effects of climate change use

longer time periods, such as 5 or 30 years of climate data (e.g.,

Ill�an et al., 2014). Combining multiple years of data reflects

research interest in long-term climate trends as well as a strat-

egy to accommodate combining years of species surveys.

Although long-term climate is a reasonable predictor variable,

we used an annual time period for climate data because we

expected that recent climate might affect birds more strongly

than temporally distant climate. If recent climate is important,

combining years of data could obscure the effect of climate on

bird distributions. Although analyzing species and climate

data on an annual interval differs from some other studies, it

focuses on the state variable of interest, annual occupancy, and

it facilitates comparison of the models evaluated here.

Our analysis was guided by the general hypothesis that

niches of species, including Louisiana Waterthrush, are

bounded by intolerable environmental extremes (Kendeigh,

1934) and therefore we included quadratic terms in models.

Our expectation was that moderate climate would be associ-

ated with higher values for w, c, and lower values for e.
Beyond this general paradigm, we did not develop specific

hypotheses about how individual covariates affected Louisi-

ana Waterthrush, or the mechanisms involved (e.g., direct

mortality, resource availability, competitor abundance).

Instead, we fit models sequentially and identified the best sup-

ported models using Akaike’s information criterion (AIC). For

many purposes, we would favor a more hypothesis-driven

approach to single-species modeling. However, in this investi-

gation, we focused on comparative modeling approaches and

on indices that could be applied across a wide range of

species.

Static, single-season models. For each of the 17 years of data,

we fit a GLM relating presence of Louisiana Waterthrush to

climate covariates using the ‘glm’ function in program R.

These models ignored detection probabilities as well as stop-

level observations so that birds were either detected (1) or

undetected (0) on each route. We did not consider climate

covariate interactions because the large number of coefficients

could not be estimated. By treating the linear and quadratic

terms as a unit (both included or both excluded), we were able

to fit 32 models each year. We used AIC to identify the best

supported model each year. However, rather than using dif-

ferent models for each year, we selected one well-supported

model structure to use in all 17 years. Although using a single

set of covariates caused some loss of parsimony, it simplified

comparison of occupancy across years and is consistent with

the general concept of a species niche. Furthermore, projecting

occupancy required selecting one covariate set for use in all

future years.

Next, we used program PRESENCE to fit static correlated

detection occupancy models to the Louisiana Waterthrush

data for each of the 17 years. We note that in occupancy mod-

eling, static models are typically called ‘single-season’ models.

A season can last any length of time, but all data are combined

into a single time period for analysis. As described above,

these models analyzed detection (1) and nondetection (0)

observations from each stop to estimate parameters associated

with the data-observation process. This model included sam-

pling process parameters for detection, p1, p2, x, and local

availability, h, h’, as well as our parameter of interest, w. Ini-
tially, we considered models with climate covariates included

on the sampling process parameters. However, these models

did not converge on stable estimates in most years. This esti-

mation problem may have been due to the low number of

detections in the data. Specifically, of all routes with Louisiana

Waterthrush detections, most (62%) had detections at only one

stop. These sparse data likely made it difficult to fit sensible

models of observations at the stop level. Therefore, we only

estimated intercepts for p1, p2, x, h, and h’, while we fit differ-

ent models relating w to climate covariates. As with the GLMs,

we used AIC to identify the best model in each year, but then

selected a single model structure to use in all 17 years to

simplify interpretation of results and enable projections.

Dynamic, multiseason models. We also used program PRE-

SENCE to fit a multiseason correlated detection occupancy

model. Because this model included more parameters and

was informed by 17 years of data, we were able to consider

more complex models. Fitting all possible models would be

time prohibitive, so we considered parameters sequentially.

Initially, we fit general models, including all climate covari-

ates, for the sampling process parameters p1, p2, h, and h’, as
well as w for 1997, while we considered alternative models for

c and e. We fit a model including all five covariates for c and e,
and then we fit additional reduced models, selecting the
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model with the lowest AIC. We then considered w, h, h’, p1,
and p2 in turn, maintaining the model structure on c and e. We

constrained the covariates on p1 and p2 to be identical, and we

did not consider covariates on x because such a model would

not be identifiable. Our expectation was that moderate climate

would be associated with higher values for w, c, and lower

values for e. We did not expect that climate would directly

affect the ability of surveyors to detect birds, but rather that

climate would affect habitat and abundance, which would

affect detection probabilities. Because bird activity often varies

with time of day, we also modeled detection as a quadratic

function of stop number, which we consider to be a proxy for

time of day. (We did not include stop number in the static

correlated detection model due to convergence problems).

Finally, we fit a Markov process model, which is a multisea-

son model that ignored imperfect detection. As with the GLM,

we ignored the stop-level observations and assumed the data

included no false negatives. As with the other multiseason

model, we estimated the probability of presence in the first

year and then estimated the probability of colonization and

extinction in subsequent years. We did this by fitting a stan-

dard multiseason model in program PRESENCE while fixing

detection probability equals to 1. We used the same covariates

on w, c, and e as in the multiseason correlated detection

occupancy model to facilitate comparison.

Evaluation of models. One common approach to comparing

model performance is to perform some type of cross-valida-

tion, such as an area under the receiver operating characteris-

tic curve (AUC) calculation (Heikkinen et al., 2006). However,

AUC and other test statistics evaluate the ability of models to

predict observations, rather than our state variable of interest,

probability of occupancy. Given that empirical field studies

demonstrate that conditional detection of Louisiana Water-

thrush is low (0.08–0.33; Buskirk & McDonald, 1995; Reidy

et al., 2011), observations may be weakly related to occupancy.

Because it treats false absences as classification errors rather

than observation errors, AUC may favor models that ignore

imperfect detection and observation errors. However, ignor-

ing imperfect detection can bias estimates of occupancy and

species–habitat relationships (Tyre et al., 2003; Gu & Swihart,

2004). Therefore, we elected not to rely on AUC or similar

statistics to judge model performance. Instead, we made an a

priori decision that multiseason correlated detection occu-

pancy models are an appropriate choice for analysis of BBS

data because these models account for imperfect detection

and focus on population dynamics, rather than patterns.

Accordingly, we rely on this model for inferences about

Louisiana Waterthrush distributions. Our purpose in compar-

ing dynamic occupancy models to other models is not to

determine which modeling approach best fits the data, but to

assess the magnitude of differences between the modeling

approaches.

We evaluated model goodness-of-fit of the best supported

models using a Hosmer–Lemeshow test (Hosmer & Leme-

show, 2000). For static models, we predicted the unconditional

probability of detecting Louisiana Waterthrush at each BBS

route. We divided the routes into deciles based on the

unconditional probability of detection and compared the pre-

dicted number of detections to the observed number. For

dynamic models, we compared the predicted rate of turnover

in detections and compared this to the observed rate at each

site. Turnover, which is the proportion of occupied sites that

is newly occupied, is a more appropriate statistic for dynamic

models, because these models estimate changes in occupancy.

We used a v2 test to determine whether the predictions devi-

ated significantly (a = 0.05) from observations. If necessary,

we combined deciles to ensure that the predicted number of

detections in a decile was >5.
We also checked for overfitting with a parametric bootstrap

analysis (MacKenzie and Bailey, 2004). We used the parameter

estimates from the best supported model to simulate a new

data set and then fit a model with the original structure to the

simulated data to obtain new parameter estimates. If the confi-

dence intervals of the new parameter estimates did not con-

tain the original parameter estimates, we took this of evidence

of overfitting and discarded the model.

Route-level detection probability. Detection probability, p, is

sometimes considered a nuisance variable and of less interest

than w. However, there are few estimates of species detection

probability for the BBS, even though the survey is widely used

in ecological studies (but see Sauer et al., 2001). Therefore, we

calculated the stop-level probability of detection across the

study area from the output of the multiseason correlated

detection occupancy model. Because analysis and inference

often occur at the route level, we also calculated p*, route-level
detection probability. In standard occupancy studies, where

sites are closed across surveys, p* = 1�(1�p)R, where R is the

number of repeat surveys. However, with correlated detection

occupancy models, our target species may be available at only

a few stops on occupied routes so that R would overstate the

opportunities for detection. A better approximation of the

opportunities for detection is p, the average number of stops

where birds are available. However, the distribution across

routes of the number of stops with available Louisiana Water-

thrush also affects p*. The greater the correlation between

stops, the more overdispersed the distribution of stops-with-

available-birds-per-route will be. Such overdispersion yields

more routes with few available birds and therefore a lower

overall p*. Similarly, heterogeneity in p produces more routes

with no detections, relative to a constant p*, which also

reduces p*. It is possible to calculate p* from our parameter

estimates, but the number of potential detection histories is

vast (>1015), so we used simulation methods to estimate p* in

each 0.5° grid cell. We used parameter estimates from the mul-

tiseason correlated detection model analysis to simulate the

number of stops with available Louisiana Waterthrush on

each occupied route and then the number of these routes with

at least one detection. We repeated this simulation 1000 times

and used the average number of simulations with at least one

detection as an estimate of p* at each route.

Displaying results: range maps and indices. The above mod-

els generated coefficient estimates relating climate covariates

to a year-specific probability of occupancy by Louisiana
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Waterthrush. In program R, we applied these coefficients to

0.5° resolution climate data for the eastern United States and

southeastern Canada to estimate the unconditional probability

of occupancy in all 0.5° cells in the study area. We then dis-

played these occupancy probabilities in a map. However, for

many purposes, it is useful to summarize the detailed infor-

mation provided by a map into one or two summary statistics,

for example, when we wish to compare range-wide occupancy

across multiple years and models. Therefore, we also calcu-

lated indices of range size and location from the maps. First,

we estimated the proportion of area occupied by the focal spe-

cies (MacKenzie et al., 2002) in the study area. We isolated the

area between longitude 60°W and 102°W and latitude 24°N
and 49°N and averaged the occupancy estimates of all 0.5°
map cells each year. We estimated standard errors from the

variance–covariance matrix of parameter estimates using the

delta method. This yielded an estimate of the proportion of

area occupied through time for each modeling approach. This

index could be used, for example, to tell whether species are

expanding or contracting their ranges. Such information could

be useful if we have hypotheses about whether climate change

will have positive or negative impacts on range size of species.

We also estimated an occupancy-based mean latitude for

Louisiana Waterthrush (e.g., La Sorte & Thompson, 2007).

Again, we isolated the area between longitude 60°W and

102°W and latitude 24°N and 49°N. We then weighted the lati-

tude of each map cell by the probability of occupancy in that

cell and divided by occupancy summed over all cells to esti-

mate the mean latitude. Again, we used the delta method to

estimate standard errors. This generated a time series for

mean latitude for each modeling method. This index could be

used to estimate range shifts relative to the equator. Such esti-

mates could be useful if we have hypotheses about how

climate change will affect the location of species ranges.

The described modeling thus resulted in range maps and

range indices for each year of data based on the preferred

methodology (dynamic occupancy modeling) as well as static

occupancy modeling, a static GLM, and a Markov process

model. We then compared maps and index estimates across

the different modeling approaches. We expected that models

accounting for imperfect detection would indicate a higher

probability of occupancy (e.g., larger range size) than models

that do not. We expected that estimates of mean latitude might

differ across modeling approaches, but we could not predict

the direction of differences. We also expected that static mod-

els would produce higher annual variation in index values.

Projections of species distributions. The motivation for much

recent species distribution modeling is the projection of distri-

butions into the future in response to climate or land-use

change (Pearson & Dawson, 2003). Thus, we compared pro-

jected species distributions under the different modeling

approaches. To generate projections, we fit models using bird

and climate data from only the first half of the study period

(1997–2005 for multiseason models; 2005 for single-season

models). We then projected bird distributions into the second

half of the study period (2006–2013) using only coefficient

estimates and climate data, as in typical projections of climate

change effects on species distributions (Peterson et al., 2002;

Pearson & Dawson, 2003). To evaluate these projections, we fit

new models using bird and climate data from the second half

of the study period (2006–2013) to estimate the species distri-

bution. These estimated distributions should be more reliable

than projections because they are based on bird observations

and not just climate data. Although we computed estimates

based on each of the four models, those produced by the

dynamic occupancy models were viewed as closest to ‘truth’,

as these models were developed to deal with the two focal

modeling features considered in this investigation (nondetec-

tion, dynamics). We used the same indices, proportion of area

occupied and mean latitude, to summarize the estimates and

projections. We generated projections for all four modeling

approaches and noted whether projected confidence intervals

contained the estimated index values. We expected that pro-

jections from multiseason correlated detection occupancy

models would be more similar to estimates.

Results

For the static GLM relating presence of Louisiana

Waterthrush to climate covariates, the best supported

model was the global (all five covariates) model in three

years, various models with four covariates in seven

years, and various models with three covariates in

seven years. The single model we selected for our final

analysis of all 17 years was the global model (Table S1).

In 15 years, mean temperature squared had the most

negative coefficient, suggesting that extreme tempera-

ture was most associated with the limits of the species

range. As with the GLMs, the best supported single-

season occupancy models each year tended to include

four or five covariates on w, so the single model we

used in the final analysis included all five covariates

(Table S2). For the occupancy component of this model,

mean temperature squared had the most negative coef-

ficient, again indicating that the limits of the species

range were most associated with extreme temperature.

Initially, AIC scores supported a dynamic occupancy

model that included climate covariates on detection

probability and the correlation between stops. How-

ever, the parametric bootstrap indicated this model was

overfitted. We suspected that the problem was due to

sparse data at the stop level, so we fit additional models

with fewer stop-level covariates until we identified a

well-supported model with no evidence of overfitting.

In this model, initial year occupancy and annual colo-

nization rates were each affected by four climate covari-

ates, while extinction was only affected by annual

mean temperature (Table 1). The correlation between

stops was modeled as a constant, while detection was

affected by stop number, as well as climate. Based on

the large coefficient on the quadratic term, the limit of

the species range in the initial year was most strongly
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associated with extreme diurnal temperature ranges. In

subsequent years, extinction from routes was associ-

ated with extreme temperature, while colonization of

routes was limited by extreme precipitation. The Mar-

kov process model included the same covariates for w,
c, and e as the dynamic occupancy model, while

excluding p1, p2, h, and h’ (Table S3). In this model,

extreme temperature was associated with the limits of

initial occupancy and colonization, and was positively

associated with extinction from routes.

Goodness-of-fit was adequate for the GLM in

13 years. However, there was some divergence

between observed and expected values of summary

statistics in 2006 (Χ2 = 14.01, df = 4, P = 0.01), 2007

(Χ2 = 16.14, df = 5, P = 0.01), 2011 (Χ2 = 17.21, df = 4,

P < 0.01), and 2012 (Χ2 = 13.57, df = 5, P = 0.02). Under

the static occupancy model, goodness-of-fit was ade-

quate in all years except 2011 (Χ2 = 22.06, df = 5,

P < 0.01). For multiseason models, goodness-of-fit was

poor for the Markov process model (Χ2 = 131.35,

df = 8, P < 0.01), but adequate for the dynamic occu-

pancy model (Χ2 = 10.30, df = 8, P = 0.24).

Maps generated from each of the models indicated

that Louisiana Waterthrush breed in the eastern United

States, north of Florida, and south of the Great Lakes

(Fig. 1). However, the maximum probability of

occupancy was much higher (70–100%) in the occu-

pancy models, relative to the other models (~40%). For

the multiseason correlated detection model, annual

probabilities of changes at a site with average climate

were modest, with c = 0.0062 (SE = 0.0026) and

e = 0.0280 (SE = 0.0046) (Table 1). Furthermore, c was

highest and e was lowest near the range center, as

expected.

The multiseason correlated detection occupancy

model provided evidence for detection heterogeneity

among routes: A model without a finite mixture

received no AIC weight, and variance in number of

detections across routes with average climate was 43%

higher in the finite mixture model. Stop number also

affected detection probability, estimated to be 0.069

(SE = 0.007) at the first stop and 0.045 (SE = 0.005) at

the last, given average climate. In 2005, between 35°N
and 40°N and 70°W and 93°W, the core of the Louisiana

Waterthrush range, detection probability at the first

stop, given the species was available, ranged from

about 0.05 to 0.08, depending on climate at each loca-

tion (Fig. 2a).

We estimated h = 0.09 (SE = 0.005) and h’ = 0.74

(SE = 0.029), indicating that only 9% of stops where

Louisiana Waterthrush were unavailable were followed

by stops where they were available, while 74% of stops

with available birds were followed by stops where

birds were also available. These correlation estimates

Table 1 Estimated coefficients (and standard errors) for multiseason correlated detection occupancy model. Coefficients are on

the logit scale. Parameters include probability of occupancy (w), probability of availability at a stop given occupancy but no avail-

ability at the previous stop (h), probability of availability at a stop given occupancy and availability at the previous stop (h’), proba-
bility of colonization (c), probability of extinction (e), probabilities of detection, given availability (p1 or p2), and probability that

detection is p1 (x). Covariates include annual mean temperature (TEMP), mean diurnal temperature range (DTR), mean tempera-

ture of the wettest quarter (TWET), annual precipitation (PREC), precipitation of the warmest quarter (PWARM), BBS route stop

number (Stop), and quadratic terms for each. ‘NA’ indicates the covariate was not considered for that parameter, while ‘–’ indicates

the covariate was considered, but not included in the best supported model

w h h’ c e p1 p2 x

Intercept �1.82 (0.23) �2.28 (0.05) 1.06 (0.15) �5.08 (0.43) �3.55 (0.17) �3.49 (0.11) �1.94 (0.11) 1.09 (0.11)

TEMP* 0.93 (0.27) – – 1.00 (0.35) �2.39 (0.38) �0.12 (0.18) 1.08 (0.16) NA

DTR �0.63 (0.33) – – 1.11 (0.31) – 0.29 (0.09) 0.11 (0.06) NA

TWET 0.42 (0.11) – – – – – – NA

PREC 3.41 (0.36) – – 3.98 (1.12) – – – NA

PWARM – – – 1.09 (0.70) – – – NA

TEMP2 �1.35 (0.22) – – �0.57 (0.24) 2.12 (0.28) �0.23 (0.15) �1.20 (0.12) NA

DTR2 �1.77 (0.38) – – �1.01 (0.44) – �0.01 (0.12) �0.21 (0.10) NA

TWET2 0.04 (0.10) – – – – – – NA

PREC2 �1.16 (0.17) – – �2.19 (0.88) – – – NA

PWARM2 – – – �0.72 (0.36) – – – NA

Stop NA NA NA NA NA 0.06 (0.03) �0.33 (0.03) NA

Stop2 NA NA NA NA NA 0.05 (0.03) �0.04 (0.03) NA

*All covariates centered and scaled. TEMP adjusted by mean = 9.9 °C, SD = 6.3. DTR adjusted by mean = 12.1 °C, SD = 2.4. TWET

adjusted by mean = 13.4 °C, SD = 8.3. PREC adjusted by mean = 902.2 mm, SD = 442.2. PWARM adjusted by mean = 249.0 mm,

SD = 144.3. Stop adjusted by mean = 24.5, SD = 14.6.
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mean that Louisiana Waterthrush were available at an

average of 26.5% of stops (13.3 stops) per occupied

route. Because each route presented surveyors with

several opportunities to detect birds, route-level detec-

tion was higher than stop-level detection (Fig. 2b). In

2005, between 35°N and 40°N and 70°W and 93°W,

detection probability on a route, given it was occupied,

ranged from about 0.33 to 0.45, depending on the cli-

mate at each route. Estimates outside the range of the

bird (Fig. 1) are based on very little data and thus are

not reliable.

We used proportion of area occupied and mean lati-

tude as summary indices to examine trends. None of

the model estimates appeared to show a strong trend in

the proportion of area occupied between 1997 and 2013

(Fig. 3). The estimated proportion of area occupied was

much higher (20–30%) under the occupancy models,

relative to the other models (~10%), and the single-sea-

son correlated detection occupancy model showed

greater annual variation than the other models. Mean

latitude also showed little trend over the time period

examined (Fig. 4). The estimate of mean latitude under

the multiseason occupancy model was approximately

0.6° (67 km) further south than under the single-season

GLM.

Multiseason parameter estimates used for projections

differed from estimates in Table 1 because the former

used only 1997 to 2005 data (Tables S3–S5). Annual pro-

jections of the proportion of area occupied during

2006–2013 showed little overall trend, consistent with

Fig. 1 Probability of presence in 2005 estimated under four different models. (a) Single-season GLM with p = 1, (b) single-season corre-

lated detection occupancy model, (c) Markov process model with p = 1, and (d) multiseason correlated detection occupancy model.

Dots show Louisiana Waterthrush records between 1997 and 2013.

Fig. 2 Estimated conditional detection probabilities in BBS surveys for Louisiana Waterthrush, 2005. (a) Average detection probability

at the first stop on a route, given that Louisiana Waterthrush is available at the stop. (b) Route-level detection probability, p*, given the

route is occupied by Louisiana Waterthrush.
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estimates using data from 2006 to 2013 (Fig. 5). Projec-

tions from static models showed higher annual varia-

tion within the study period, and in one year, projected

confidence intervals did not contain the estimated area

occupied (Fig. 5). Dynamic models projected almost no

change in occupancy, and confidence intervals con-

tained the estimated proportion of area occupied

(Fig. 5). Annual projections of mean latitude also

showed annual variation, but little trend (Fig. 6). Pro-

jections from static models again showed larger annual

changes in latitude than the mean latitude estimated

from the 2006 to 2013 data and projected confidence

intervals did not contain estimated latitude in several

years (Fig. 6). Multiseason model projections diverged

from estimated latitude initially, when the estimates

are most informed by the static initial occupancy

parameter, w. Projections converged on estimates in

later years, especially for the dynamic correlated detec-

tion model (Fig. 6).

Discussion

Species distribution models are widely used to investi-

gate the ecological niches of species and to project

future changes in distribution. Until recently, there

were few options for accounting for imperfect detection

in continental-scale surveys, such as the BBS. Using cor-

related detection occupancy models (Hines et al., 2010,

2014), we estimated that detection probabilities for

Louisiana Waterthrush during 3-min point counts in

June were low, which doubled estimates of the propor-

tion of area occupied, relative to estimates from GLM

and Markov process models that ignored detection.

Although we do not know ‘true’ detection probability

in this system, our estimates are consistent with previ-

ous field work estimating the probability of detecting

an individual Louisiana Waterthrush during 10-min

point counts as 0.08 to 0.33 (Reidy et al., 2011) and the

‘detection frequency’ (percent of surveys with detec-

tions, at sites with detections) for the species during

repeated 3-min point counts as 0.18 (Buskirk & McDon-

ald, 1995). Although Louisiana Waterthrush may have

below-average detection probabilities, our results sug-

gest that the implicit assumption of p = 1 used by the

GLM is invalid and that it is important to account for

imperfect detection in species distribution models

(K�ery et al., 2013).

We also found a strong correlation (h = 0.09,

h’ = 0.74) between successive stops in the probability of

local availability of Louisiana Waterthrush. This corre-

lation is presumably caused by adjacent stops having

similar habitat so that both stops are either suitable or

unsuitable for Louisiana Waterthrush. Simulation stud-

ies have shown that even a weaker correlation

(h = 0.10, h’ = 0.50) could significantly bias estimates of

w (Hines et al., 2010), indicating the importance of con-

sidering correlation along linear transects of point

counts. Detections in the BBS are also correlated for the

Brown-headed Nuthatch (Sitta pusilla) and Eastern

Wood-Pewee (Contopus virens), but not for the Red-

headed Woodpecker (Melanerpes erythrocephalus), indi-

cating that correlated detection occupancy models may

often, but not always, be preferred over standard occu-

pancy models (Iglecia et al., 2012; Hines et al., 2014).

We extended the correlated detection occupancy

models of Hines et al. (2010, 2014) to include a finite

Fig. 3 Proportion of area occupied by Louisiana Waterthrush

(and confidence intervals) from 1997 to 2013, estimated using

four different models: a single-season GLM with p = 1 (gray), a

single-season correlated detection occupancy model (light gray),

a Markov process model with p = 1 (vertical hatching), and a

multiseason correlated detection occupancy model (diagonal

hatching).

Fig. 4 Mean latitude for Louisiana Waterthrush (and confi-

dence intervals) from 1997 to 2013, using four different models:

a single-season GLM with p = 1 (gray), a single-season corre-

lated detection occupancy model (light gray), a Markov process

model with p = 1 (vertical hatching), and a multiseason corre-

lated detection occupancy model (diagonal hatching).
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mixture model on detection to account for detection

heterogeneity. Any unmodeled detection process that

causes detection to differ among routes can cause

detection heterogeneity. Examples include differences

in abilities among observers (Sauer et al., 1994), differ-

ences within an observer through time (Kendall et al.,

1996), habitat features and background noise (Pacifici

et al., 2008), and differences in bird abundance across

routes (Alldredge et al., 2007). In theory, suitable

covariates or random-effects models could account for

Fig. 5 Projected area occupied (dashed line) and estimated area occupied (solid line) from 2006 to 2013 under different models. Projec-

tions developed from 1997 to 2005 data. (a) Single-season GLM with p = 1, (b) single-season correlated detection occupancy model,

(c) Markov process model with P = 1, and (d) multiseason correlated detection occupancy model.

Fig. 6 Projected mean latitude (dashed line) and estimated mean latitude (solid line) from 2006 to 2013 under different models. Projec-

tions developed from 1997 to 2005 data. (a) Single-season GLM with p = 1, (b) single-season correlated detection occupancy model,

(c) Markov process model with p = 1, and (d) multiseason correlated detection occupancy model.

Published 2016.

This article is a U.S. Government work and is in the public domain in the USA, Global Change Biology, doi: 10.1111/gcb.13283

10 M. J . CLEMENT et al.



detection heterogeneity, but we judged these were not

practical in the current application. The mixture model

accounted for the relatively high variance in p across

routes, and models with the mixture were strongly sup-

ported over models without it. Although we provide

estimated coefficients for the two components of the

mixture, it is not advisable to assign biological meaning

to the two sets of coefficients (Pledger, 2000). Given that

unmodeled detection heterogeneity can bias occupancy

estimates, especially when detection is low (MacKenzie

et al., 2002; Royle, 2006), we suggest that this extension

may improve model estimates in many applications.

However, we also caution that when p is low, model

estimates may be quite sensitive to the mixture used

(e.g., finite, logit normal, beta), yet model selection may

not distinguish among these heterogeneity models

(Link, 2003; Royle, 2006).

Under static models, occupancy may be estimated

separately during each season, supporting potentially

different conclusions about species–climate relation-

ships each season. For example, t-tests indicated that

GLM coefficients were significantly (a = 0.05) related to

precipitation-squared in 12 years, but not in 5 years

(Table S1). If we ignore issues such as uncertainty in

sampling and model selection, these estimates might

suggest the relationship between Louisiana Water-

thrush and precipitation abruptly changed several

times during the study period. However, such an inter-

pretation creates difficulties both for our understanding

of a species niche and our ability to project distribu-

tional responses to future precipitation changes. The

single-season occupancy model appeared to be particu-

larly sensitive to annual changes in the data (Fig. 3).

Low detection rates in this data set combined with the

inverse sampling correlation between w and p and the

flexibility of the finite mixture on detection may make

the single-season correlated detection occupancy model

more prone to overfitting, although our parametric

bootstrap did not indicate overfitting.

In contrast, multiseason models estimate changes in

occupancy, recognizing that species may be out of equi-

librium. This approach can parse climate covariates that

cause changes in the distribution of a species from

covariates that are simply spatially co-occurring with a

species (Yackulic et al., 2015). Accordingly, dynamic

models also provide a sensible approach for projecting

range responses to climate or habitat change (Pagel &

Schurr, 2012). Specifically, our dynamic models were

structured to estimate time-invariant relationships

between colonization and climate and between extinc-

tion and climate, an approach that is more consistent

with the niche concept. This approach led to different

conclusions about how climate affects Louisiana Water-

thrush. In particular, the dynamic occupancy model

indicated that initial occupancy was limited by extreme

diurnal temperature range and colonization was

limited by extreme precipitation, while all other models

indicated that occupancy was limited by extreme

temperature.

We summarized distributional changes for Louisiana

Waterthrush with two indices, proportion of area occu-

pied and mean latitude. By converting a distribution

map to a single value, the indices contain less informa-

tion than the full model results. However, communicat-

ing the changes in 17 years of maps is difficult without

simplifying metrics (Gregory et al., 2005). Furthermore,

investigation of more species and years of data would

only increase the need for indices. Indices used for

monitoring should be related to motivating hypotheses

and conservation decisions (Nichols & Williams, 2006).

We selected proportion of area occupied because it is a

measure of range size, and it is often hypothesized that

climate change (or other environmental change) will

cause range contractions (McDonald & Brown, 1992) or

expansions (Ogden et al., 2006). We selected mean lati-

tude because it is often hypothesized that warmer tem-

peratures will cause species distributions to shift

poleward (Thomas & Lennon, 1999). We note that other

indices could be appropriate for other hypotheses. For

example, a turnover rate index could be used to test the

hypothesis that climate change is increasing local colo-

nization and extinction events. An index tracking the

poleward distributional boundary could be appropriate

because the poleward boundary may be more strongly

affected by abiotic factors (e.g., climate change), while

the equatorial boundary is affected by biotic factors

(Brown et al., 1996). With the current data set, account-

ing for imperfect detection doubled the level of one

index, the proportion of area occupied. Although index

levels differed among models, the overall trends were

similar regardless of the model used. Our expectation

was that model performance would differ more when

projecting future distributions because of the equilib-

rium assumption inherent in static models. Static model

projections were poor in some years, but the overall

trend was similarly flat under all modeling approaches.

A data set with greater variation in climate or species

distribution might yield more differences among the

modeling approaches. Most importantly, comparison of

estimates and projections from the dynamic occupancy

model with those of models that did not deal with

either nondetection (Markov model) or dynamics (static

occupancy model) or both features (GLM) showed

substantive differences.

Much effort has been invested into modeling the

effects of climate change or other ecological changes on

species distributions (Heikkinen et al., 2006). Fre-

quently, these models predict huge changes in range
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size or location (e.g., Peterson et al., 2002). In turn, dif-

ferences in projected distributions can have large

impacts on management decisions, such as the size and

location of reserve networks (Wilson et al., 2005). Sev-

eral authors have advocated more mechanistic,

dynamic species distribution models (Pearson & Daw-

son, 2003; Guisan & Thuiller, 2005), and here, we have

fit more mechanistic models to BBS data. While some

proposed mechanistic models envision parameterizing

models with experimental data on physiological and

behavioral responses of individual organisms (La Sorte

& Jetz, 2010), our approach relies on simple detection/

nondetection data. Spatially explicit models are another

relatively mechanistic approach to species distribution

models (Hooten et al., 2007; Yackulic et al., 2012, 2015).

In these models, colonization and extinction rates

depend on the distance to other populations. For inva-

sive species, such spatial models may be well sup-

ported (Hooten et al., 2007; Yackulic et al., 2015), while

spatial effects may be muted for species in equilibrium

(Yackulic et al., 2012). In contrast, our model follows

the more typical approach of allowing unlimited dis-

persal, although we acknowledge that this simplifying

assumption is rarely true (Guisan & Thuiller, 2005). We

did not use a spatially explicit model because the spe-

cies distribution remained compact without a spatially

explicit model (Fig. 1) and because we suspect it would

be difficult to estimate the additional parameters.

Because our study was observational, it is difficult to

demonstrate a causal relationship between climate and

distribution, and we acknowledge that other factors,

such as habitat change or species competition, could

also affect the distribution of Louisiana Waterthrush.

More generally, we argue that accounting for imperfect

detection can reduce bias of estimates of occupancy

(Tyre et al., 2003) and that dynamic models can better

project species distributions, especially in the face of

disequilibrium (Pagel & Schurr, 2012; Yackulic et al.,

2015). Broader use of dynamic models accounting for

imperfect detection will require surveys to be designed

to collect data sufficient for estimation and possibly

further model development for systems with different

survey protocols.
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